skip to main content


Search for: All records

Creators/Authors contains: "Tsichlas, Kostas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the unit-cost comparison model, a black box takes an input two items and outputs the result of the comparison. Problems like sorting and searching have been studied in this model, and it has been general- ized to include the concept of priced information, where different pairs of items (say database records) have different comparison costs. These comparison costs can be arbitrary (in which case no algorithm can be close to optimal (Charikar et al. STOC 2000)), structured (for exam- ple, the comparison cost may depend on the length of the databases (Gupta et al. FOCS 2001)), or stochastic (Angelov et al. LATIN 2008). Motivated by the database setting where the cost depends on the sizes of the items, we consider the problems of sorting and batched predecessor where two non-uniform sets of items A and B are given as input. (1) In the RAM setting, we consider the scenario where both sets have n keys each. The cost to compare two items in A is a, to compare an item of A to an item of B is b, and to compare two items in B is c. We give upper and lower bounds for the case a ≤ b ≤ c, the case that serves as a warmup for the generalization to the external-memory model. Notice that the case b = 1,a = c = ∞ is the famous “nuts and bolts” problem. ) In the Disk-Access Model (DAM), where transferring elements between disk and internal memory is the main bottleneck, we con- sider the scenario where elements in B are larger than elements in A. The larger items take more I/Os to be brought into memory, consume more space in internal memory, and are required in their entirety for comparisons. A key observation is that the complexity of sorting depends heavily on the interleaving of the small and large items in the final sorted order. If all large elements come after all small elements in the final sorted order, sorting each type separately and concatenating is optimal. However, if the set of predecessors of B in A has size k ≪ n, one must solve an associated batched predecessor problem in order to achieve optimality. We first give output-sensitive lower and upper bounds on the batched predecessor problem, and use these to derive bounds on the complexity of sorting in the two models. Our bounds are tight in most cases, and require novel generalizations of the classical lower bound techniques in external memory to accommodate the non-uniformity of keys. 
    more » « less
  2. The fundamental problems of sorting and searching, traditionally studied in the unit-cost comparison model, have been generalized to include priced information, where different pairs of items have different comparison costs. These costs can be arbitrary (Charikar et al. STOC 2000), structured (Gupta et al. FOCS 2001), or stochastic (Angelov et al. LATIN 2008). Motivated by the database setting where the comparison cost depends on the sizes of the records, we consider the problems of sorting and batched predecessor where two non-uniform sets of items A and B are given as input. In the RAM model, pairwise comparisons (A-A, A-B and B-B) have respective comparison costs a, b and c. We give upper and lower bounds for the case a<= b <= c, which serves as a warmup for the generalization to the external-memory model. In the Disk-Access Model (DAM), where transferring elements between disk and RAM is the main bottleneck, we consider the scenario where elements in B are larger than elements in A. All items are required in their entirety for comparisons in RAM. A key observation is that the complexity of sorting depends on the interleaving of the small and large items in the final sorted order, and with a high degree of interleaving, the lower bound is dominated by an associated batched predecessor problem. We give output-sensitive bounds on the batched predecessor and sorting; our bounds are tight in most cases. Our lower bounds require novel generalizations of lower bound techniques in external memory to accommodate non-uniform keys. 
    more » « less